

Geography of Innovation and the Location of MNEs R&D Activities

20th Uddevalla Symposium 2017 University West, Trollhättan, Sweden June 15-17, 2017

Davide Castellani

Henley Business School, University of Reading

d.castellani@henley.ac.uk

www.henley.ac.uk

Outline

- Innovation is clustered in a few places in the world ('local buzz' argument)
- These few places need to be connected to each other ('global pipeline' argument)
- MNEs are privileged actors to build these pipelines, but they need to internationalise their R&D activities in geographically dispersed locations
- What are the factors that drive the location of R&D by MNEs?
 - In particular, to what extent
 - Geographic distance is an obstacle to internationalisation of R&D
 - The location of production activities constraints the location of R&D

Main references

- Castellani D. (2017) The Changing Geography of Innovation and the MNE, in Gary Cook, Jennifer Johns, Frank McDonald, Jon Beaverstock and Naresh Pandit (eds.) *The Routledge Companion to International Business and Economic Geography, forthcoming*
- Castellani D., Zanfei A. (2006) Multinational Firms, Innovation and Productivity, Edward Elgar
- Castellani, D., Jimenez, A., & Zanfei, A. (2013). How remote are R&D labs? Distance factors and international innovative activities. *Journal of International Business Studies*, 44(7), 649-675.
- Castellani D., Lavoratori K. (2017) The Lab and the Plant. Offshored R&D and co-location with manufacturing activities, *mimeo*.

Geography of innovation

- EG perspective
 - Innovation activities tend to cluster to allow more effective transfer of (mostly) tacit knowledge
 - the importance of 'being there' (Gertler, 2003)
 - Local buzz and global pipelines (Bathelt, Malberg and Maskell, 2004)

'Local buzz' generates opportunities for the transmission of sticky, non-articulated, tacit forms of knowledge between firms located there

• Innovation becomes **more clustered over time** as a result of local buzz, but eventually it needs to be **integrated with knowledge external** to the cluster

'Global pipelines' can 'pump' information about markets and technologies into the cluster, making the 'buzz' more dynamic

- Pipelines can be created by firms and organisation, or through personal networks (Lorenzen and Mudambi, 2013)
- But how (and how much) knowledge is transferred in these global pipelines? How can the obstacles of 'not being there' be overcome? (Gertler, 2003, 2008)
- The literature on MNEs innovation activities can help

Geography of innovation

- IB perspective
 - MNEs typically produce knowledge in their home R&D labs, and exploit it through their network of subsidiaries
 - Increasingly MNEs use their network to leverage geographically dispersed knowledge (Cantwell and Mudambi, 2005)
 - MNEs are becoming orchestrators of knowledge
 - tap into diverse knowledge clusters and have the ability to de-contextualise tacit knowledge and transfer it within the MNE and across space (Meyer et al., 2011; Castellani and Zanfei, 2006, Cantwell and Santangelo, 1999)
 - create institutional proximity that allows **connections between knowledge sources** and share tacit knowledge across locations **despite of geographical distance** (Cano-Kollmann et al., 2016; Gertler, 2003)
 - They are privileged actors to build global pipelines between clusters

Geography of innovation

- In order to act as conduits of knowledge between clusters MNEs need to locate R&D in dispersed locations
 - How **far** are MNEs willing to go with their R&D in order to be **close** to knowledge cluster?
 - **Disperse** R&D geographically to tap into clusters **or co-locate** R&D with production?

Distance and the location of R&D

Castellani, Jimenez, Zanfei (2013)

Firms may need to cover long distances to gain access to knowledge clusters

- Knowledge is concentrated in (relatively) few and specialized clusters where MNC 'need to go'
- The location choice set is more limited than in the case, for example, of manufacturing activities
- 2 MNCs are well placed in the transfer of (codified and tacit) knowledge across clusters even over long distances
 - Through corporate culture and routines they facilitate transfer of knowledge within the MNE
- 3 The international dispersion of MNC's R&D activities is hindered more by socio-institutional distance (that affects information and communication costs) than by geographic distance
- Unfamiliar locations increase information and communication costs that are crucial for effectiveness of foreign R&D labs
 Geographic distance between cluster is less of an obstacle when MNEs decide where to locate their R&D

The Lab and the Plant

Castellani and Lavoratori (2017)

Why MNEs may locate **their** R&D close to **their** production activities?

- previous investments reduce information costs and uncertainty
- economies of scale and scope
- inter-functional linkages within firm
 - tacit knowledge transfers
 - coordination and control

The Lab and the Plant

Castellani and Lavoratori (2017)

Why MNEs may **not** want to locate their R&D close to their production/R&D activities?

- production and R&D are attracted by different factors (e.g. cheap labour and proximity to markets vs. quality of human capital and local innovation system)
 - geographical dispersion in search for the best external location factors, or
 - concentration of activities along the value chain in a same location, to preserve intra-firm linkages.

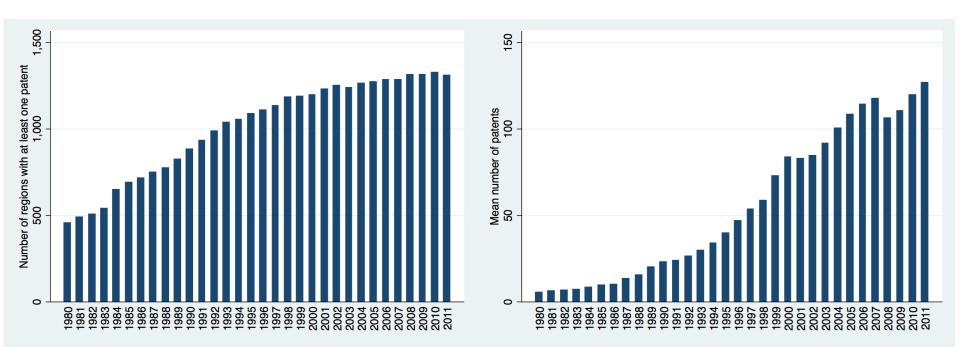
The Lab and the Plant

Castellani and Lavoratori (2017)

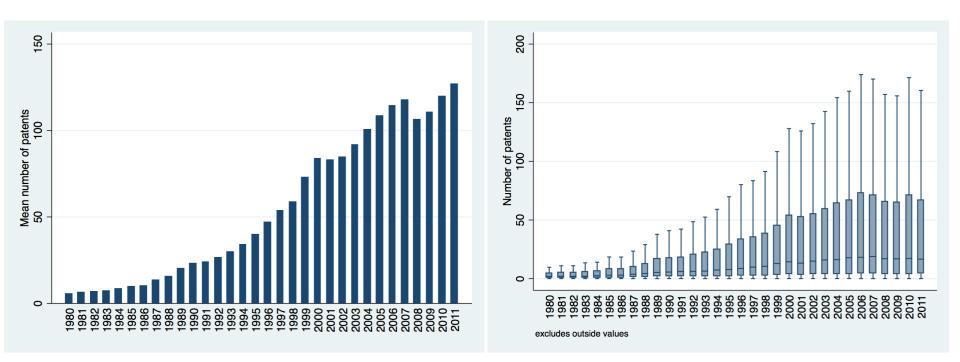
- The need/advantage from co-location can be very heterogeneous across firms
 - across sectors
 - e.g. degree of modularity of technologies, engineering-intensive R&D vs separable R&D/production processes
 - based on firm sensitivity to coordination and control costs
 - e.g. large vs. small firms and more vs. less internationalised firms
 - based on the importance of tacit vs. codified knowledge

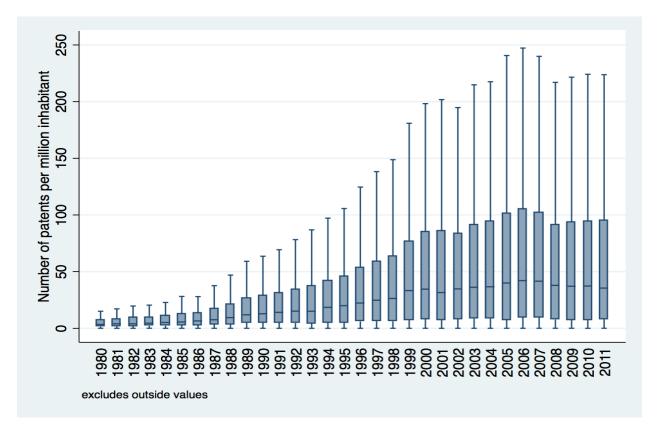
Evidence on the changing geography of inventive activity

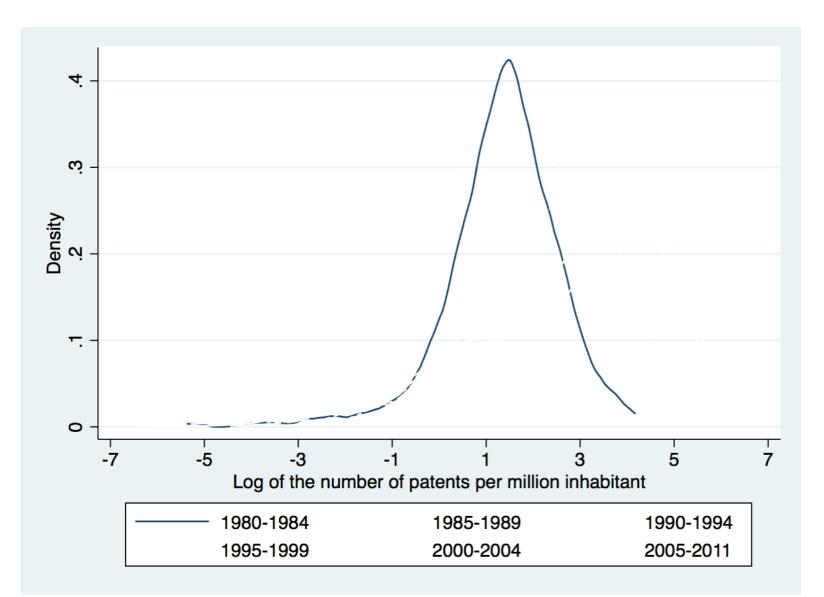
Data

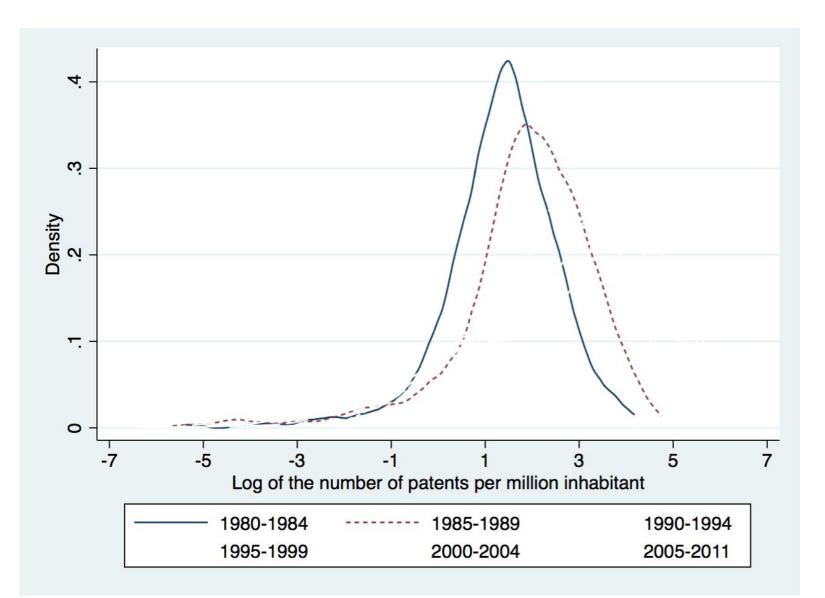

- OECD Regional Innovation Dataset
 - 39 countries, 1482 regions (TL2 or TL3) and 32 years (1980-2011)
 - Patent Cooperation Treaty (PCT) Applications, fractional count by inventor and priority year
 - Number of applications
 - Number of patents with co-applicants
 - Share of co-applicants within the region, the country, foreign
 - Population
 - Source: <u>http://stats.oecd.org</u>

Data

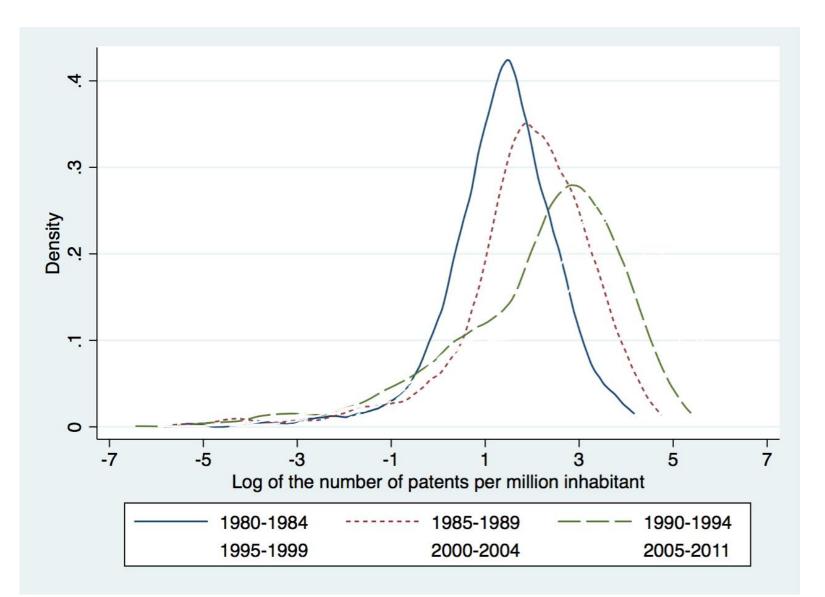

		# Regions	# Patents	# Patents	Population	Patents per million inhabitants
		(%)	(%)	(median)	(median)	(median)
TL2		13.3	7.9%	4	2,621,091	1
TL3 - intermediate		27.21	23.7%	10	511,840	22
TL3 - rural		3.51	0.1%	2	144,751	17
TL3 - close to a city		22.53	11.4%	8	392,842	20
TL3 - re	mote	10.58	1.4%	3	180,787	19
TL3 - ur	ban	22.87	55.4%	22	841,717	32
Total		100.0%	100.0%	9	503,407	19
		(1,482)	(2,124,022)			
USA	TL3	12.1%	35.4%	17	668,486	24
JPN	TL3	3.2%	14.7%	29	1,723,006	17
DEU	TL3	6.5%	12.5%	29	615,003	44
GBR	TL3	9.3%	4.9%	10	298,243	34
FRA	TL3	6.5%	4.7%	9	495,900	21
KOR	TL3	1.1%	3.3%	36	1855,040	17
CHN	TL2	2.1%	3.1%	9	34,911,028	0.2
SWE	TL3	1.4%	2.5%	28	260,197	102
NLD	TL3	0.8%	2.4%	25	1041,552	43
ITA	TL3	7.4%	2.0%	5	355,929	13
•••						

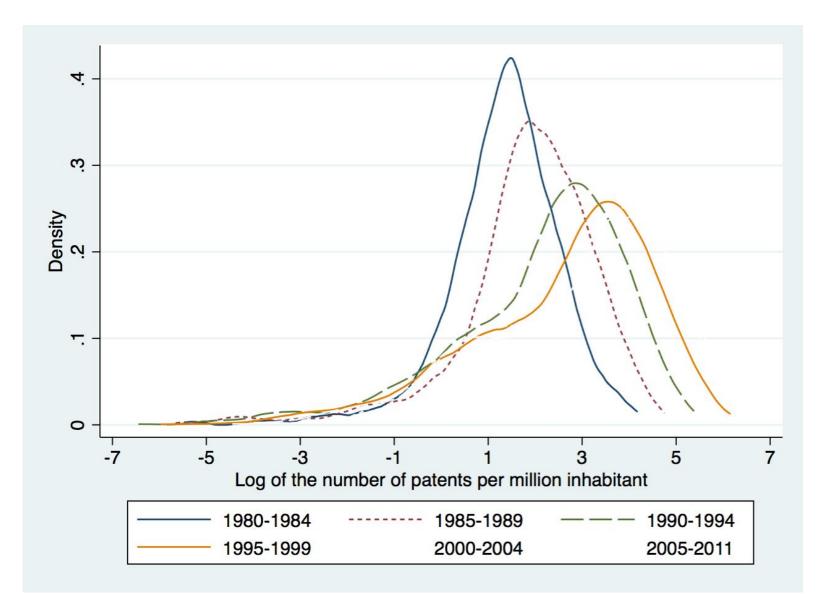

- The number of regions engaged in patenting has increased threefold
- The average number of patents per region has increased by 2 orders of magnitude

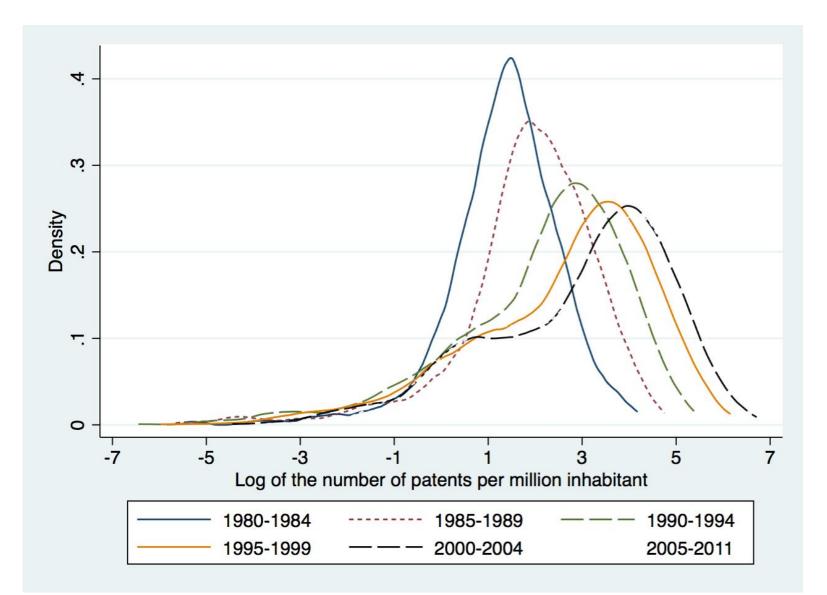

- The increase in the mean patents is the result of a very skewed distribution
- The median increased relatively little, but there are a number of regions which have significantly increased their patenting

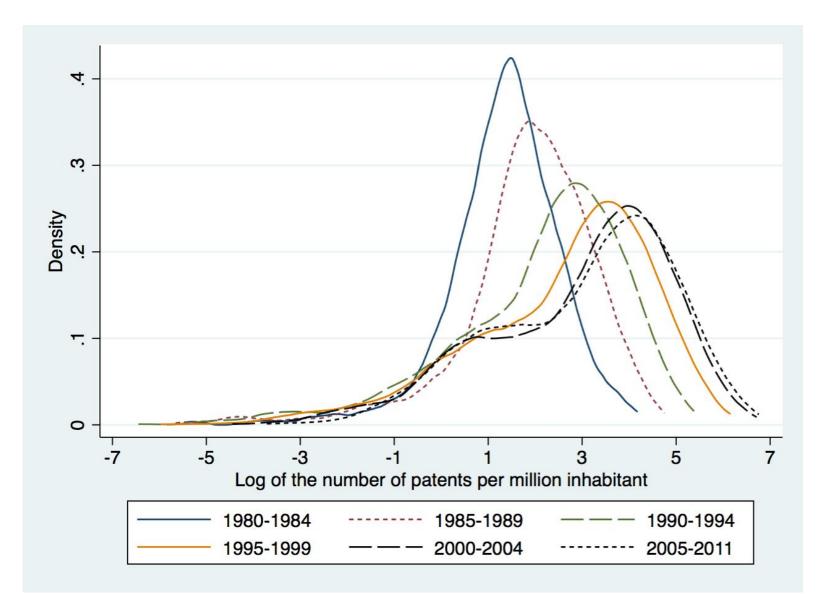


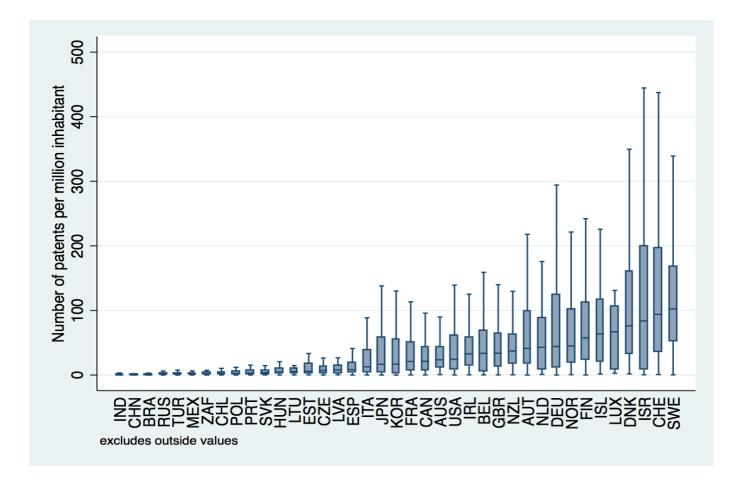
- A similar pattern is observed when we normalise by population
 - Patenting is not driven by increased size of the region!

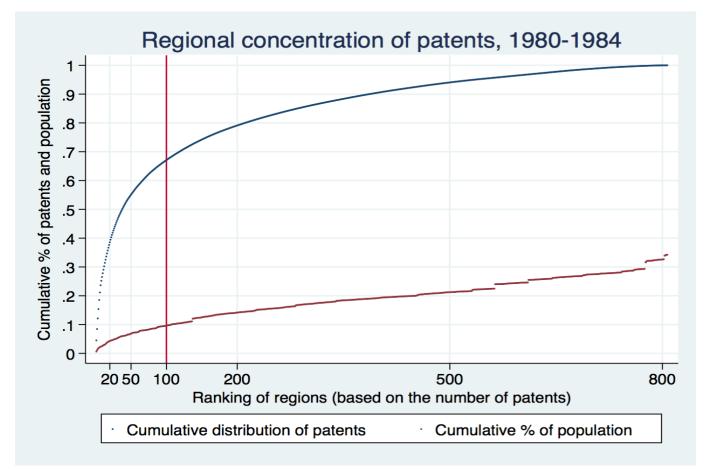


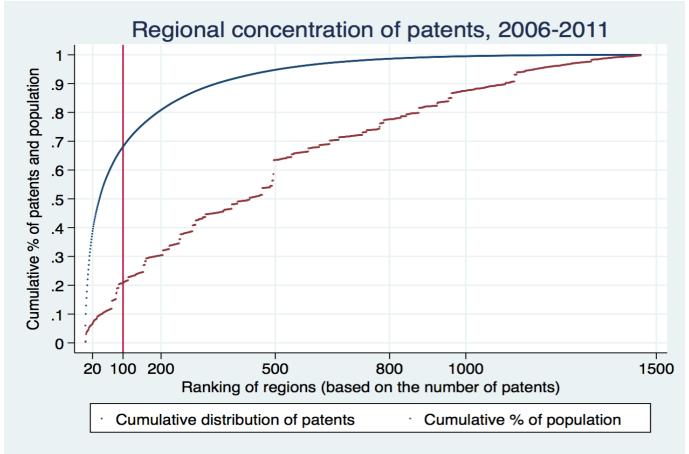






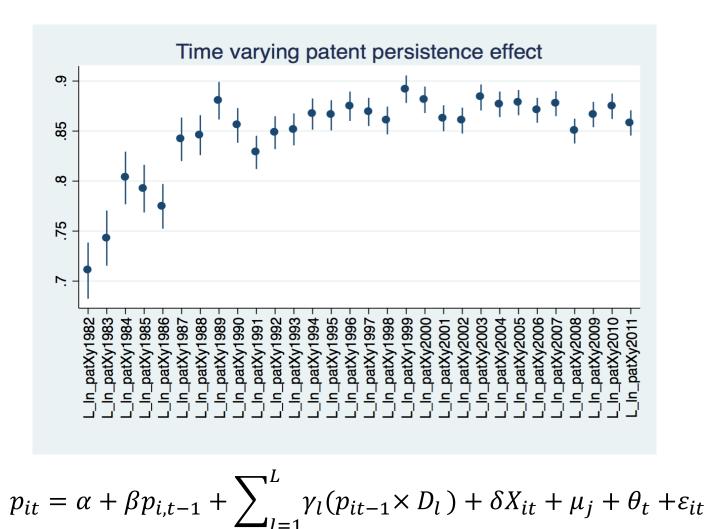




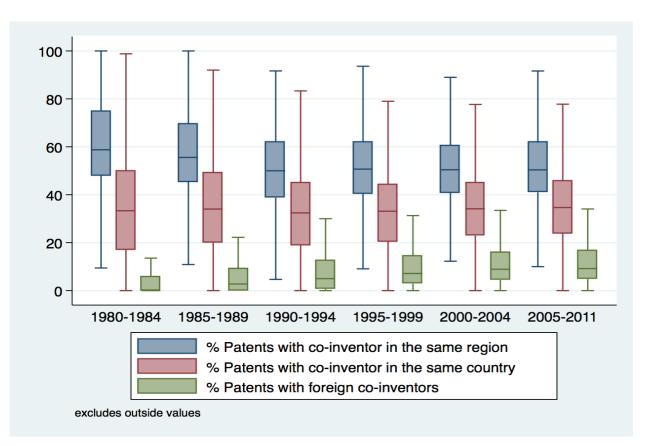

• High variance is a feature of most countries!

- High concentration of patenting. In 1980-84,
 - just 100 regions account for 70% of patents (and only 10% of population)
 - 70% of world's population is in non-patenting regions

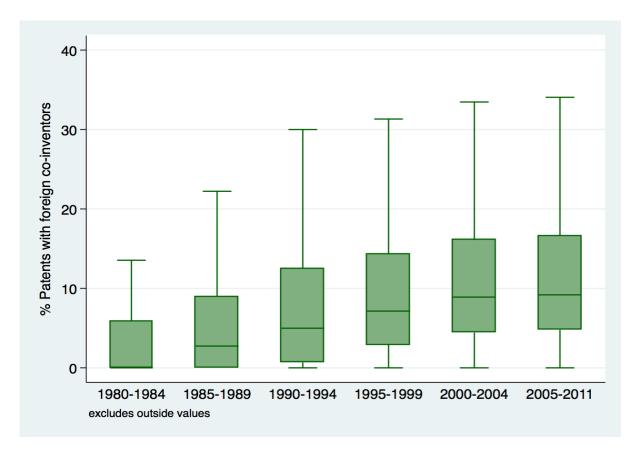
[•] In 2006-2011,


- Still 100 regions account for 70% of patents (but they now account for 20% of population)
- Virtually all regions do some inventive activity

		Quintiles of the number of patents per million inhabitants at time t (5-year							
		period)							
		1st	2nd	3rd	4th	5th	Total		
	1st	69.58	20.87	6.48	2.10	0.98	100		
	2nd	22.42	65.50	11.88	0.21	0.00	100		
Quintiles of the number of	3rd	1.86	13.23	63.45	20.03	1.43	100		
patents per million inhabitants at time t-1 (5-year period)	4th	0.48	0.54	21.40	60.87	16.71	100		
	5th	0.34	0.07	1.70	17.13	80.76	100		

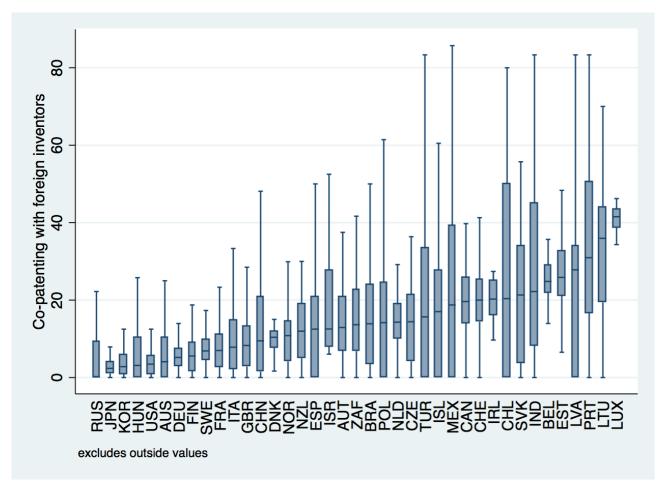

• High persistency in patenting

The changing geography of patenting: global pipelines



- Local co-invention is predominant (proximity matters), but with large heterogeneity
- Co-patenting with foreign inventors is becoming more important

The changing geography of patenting: global pipelines



• Co-patenting with foreign inventors is becoming more important

The changing geography of patenting: global pipelines

• Heterogeneous behaviour in co-patenting with foreign inventors is common in most countries

Evidence on internationalisation of MNEs R&D

Data

- Cross-border greenfield investments from FT's *fDi Markets* over 2003-2014
 - For each project we know
 - Name of the investing company and its parent
 - **City** where the investment take place and city of parent (with geographical coordinates)
 - Main **business activity** involved (e.g. production, R&D, sales & marketing, HQ, logistics, business services, ...)
 - Industry

Distance and the location of R&D

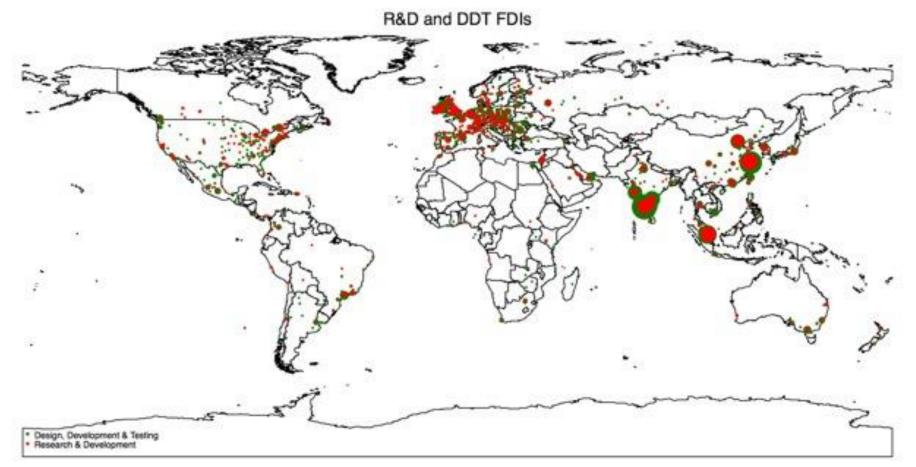
Castellani and Santangelo (2016)

Table 2 – Average distance between city of origin and city of destination

	Global Cities	Metro area of global cities	Moderate global cities	Peripheral cities	Total
Coordination	7,839	6,709	6,617	6,538	7,316
R&D-related	8,312	7,363	8,605	6,601	7,771
Production	6,481	5,948	5,769	5,494	5,707
Support Svcs.	7,153	5,833	6,227	5,214	6,033
Advanced Svcs.	7,024	6,130	5,886	5,193	6,489
Total	7,122	6,198	6,223	5,484	6,347

Coordination: Headquarters

Support svcs: Customer centers, Logistics, Maintenance, Technical support


R&D-related: R&D, Design, Development and Testing

Production: Manufacturing, Construction, Extraction

Advanced svcs: Business svcs, Sales and Marketing

Data

6,235 projects in R&D or Design, Development and Testing in 1,421 cities worldwide

Probability of locating R&D in a city

Mixed logit results

vilxed logit results				i	Usiness 3
Table 3: Results of Mixed Logit Model	All firms	Large firms	Small	High-tech	Low-tech
Mean					
Internal factors					
Previous Production (firm-city)	1.460***	0.011	21.622**	0.103	4.838***
Previous Other Activities (firm-city)	1.143***	0.866***	13.760**	1.694***	-1.620***
External factors					
Main Global City	-0.451***	0.049	-0.7254***	-0.373***	-0.814***
Secondary Global City	0.276***	0.316***	0.227***	0.332***	-0.094
City within 100 km from GC	0.144***	0.183***	0.118**	0.137***	0.163
Agglomeration R&D (log) (city)	0.284***	0.043	0.390***	0.357***	-0.166**
Agglomeration Production (log) (city)	0.032*	0.122***	-0.010	0.009	0.185***
Agglomeration Other Activities (log) (city)	0.600***	0.554***	0.635***	0.566***	0.773***
Distance (log)	0.072***	0.175***	0.016	0.059***	0.157***
Standard Deviation					
Previous Prod (firm-city)	9.072***	7.230***	34.660**	9.758***	12.173***
Previous Other (firm-city)	6.766***	4.648***	43.506**	5.591***	- 23.148***
R&D (log) (city)	0.340***	-0.251***	0.374***	0.315***	0.411***
Prod. (log) (city)	-0.003	-0.029	0.004	-0.011	0.019
Other (log) (city)	-0.002	-0.0213	-0.004	-0.003	-0.006
Distance (log)	-0.002	0.048	-0.008	-0.006	0.008
No. obs	8,849,957	3,525,500	5,324,457	7,613,705	1,236,252
No. Projects	6,235	2,481	3,754	5,362	873
No. Cities	1,421	1,421	1,421	1,421	1,421

Probability of locating R&D in a city

Mixed logit results

	Pharma/Biotec		Somiconductor		
	h Filanna/Diolec	Chemicals	Semiconductor	Automotive	
	Low modularity		High mod	ularitv	
Mean			5		
Previous Prod (firm-city)	3.995***	11.247***	-0.858	0.184	
Previous Other (firm-city)	3.427*	7.220***	1.826***	-0.407	
External factors					
Main Global City	-0.160	0.1037	0.034	-0.329	
Secondary Global City	0.379**	0.1877	0.527**	0.202	
City within 100 km from GC	0.734***	0.5822***	0.209	0.357**	
Agglomeration R&D (log) (city)	0.137*	-0.0651	0.829***	0.421***	
Agglomeration Prod. (log) (city)	0.023	0.3916***	-0.105	0.198**	
Agglomeration Other (log) (city)	0.733***	0.5061***	0.368***	0.214**	
Distance (log)	0.002	0.1331*	0.0957	0.042	
Standard Deviation					
Previous Prod (firm-city)	10.977**	25.602***	7.160***	6.728***	
Previous Other (firm-city)	15.867***	29.870***	6.504***	8.243***	
R&D (log) (city)	0.344***	-0.426***	0.218	0.065	
Prod. (log) (city)	0.018	0.012	0.300***	-0.083	
Other (log) (city)	-0.001	0.040	0.009	0.027	
Distance (log)	-0.015	0.141	0.110	0.069	
No. obs	851,179	565,556	545,664	575,503	
No. Projects	599	398	384	406	
No Cities	1 /121	1 //21	1 / 21	1 //21	

Concluding remarks

- In order to thrive, clusters need 'local buzz' and 'global pipelines'
- Evidence based on the evolution of patenting across OECD regions in the last 30 years suggest that
 - Despite that more regions have started to patent, strong clustering have emerged (consistent with 'local buzz' effect)
 - the top regions are patenting more and more
 - A number of regions have increased their propensity to co-patent with foreign inventors (consistent with 'global pipeline' argument)
 - It may be due to a combination of laggard regions starting to patent more and established regions seeking to renew their knowledge base
- MNE can play a key role in building pipelines that connect clusters
 - They seem able to overcome the difficulties of doing R&D far from home and transfer knowledge across space
 - Dispersion of R&D is somewhat constrained by the need to keep R&D close to production